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Abstract

Propagation of fluid-driven or hydraulic fractures deflected at bedding interfaces in layered sedimentary rocks and subsequent fluid invasion
is investigated numerically using a two-dimensional boundary element model. The fracture is driven by an incompressible Newtonian fluid
injected at a constant rate. The frictional stress on the interface is assumed to obey Coulomb’s frictional law without cohesion. The bedding
interface can be given a non-zero minimum fluid conductivity. A numerical scheme that deals with both rock deformation and fluid flow is
presented and its accuracy is verified in terms of comparisons with existing results. To explore the mechanisms involved in fluid and fracture
invasion into the interface, parametric studies are carried out for different elastic modulus contrasts, in situ stresses, interfacial frictional coef-
ficients, distances from the injection point to the interface, and fluid viscosities. The results are provided as time-dependent variations of dis-
placements, fluid pressures, contact stresses and fluid fronts. Fracture deflection and fluid invasion into the interface are found to rely essentially
on local stress and deformation states at the intersection point. Fluid invasion and fracture growth may be delayed or inhibited when the interface
is subjected to large confining stress or when fluid viscosity is relatively low for cases where the fluid-driven fracture originates in the softer
layer. In this case, a greater layer-parallel tensile stress is produced and can lead to fracture propagation through the bedding contact. Low
to medium frictional strength is found to promote fluid penetration and T-shaped fracture formation by interfacial opening. If the hydraulic frac-
ture originates in a stiffer layer, fluid invasion into bedding contacts can occur smoothly without the occurrence of interface closure, and the
fracture is thus terminated by forming a T-shaped fracture at the bedding interface. For fracture deflection into and growth along the interface
in the absence of interface closure, the long-time responses resemble the solution for a fluid-driven fracture growing along a frictionless interface
with vanishing toughness.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Opening-mode fractures driven by fluids such as water and
magma which are called fluid-driven fractures or hydraulic
fractures have been observed to play a role in many geologic
processes. Magma-driven volcanic dikes and hazards associ-
ated with them have motivated geologists and geophysicists
to develop models to aid the studies of their behaviour (Rubin,
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1995). The fracturing of rock formations by pressurized fluid
is also a common method applied to stimulation of oil and
gas wells in a variety of reservoir rocks (Warpinski and Teufel,
1987; Daneshy, 2003). Over the past years, a number of
less-conventional uses of hydraulic fracturing technology, of-
ten resulting in more complex fracture geometries, have
been introduced, among them, stimulation of geothermal res-
ervoirs (Pine and Batchelor, 1984), stimulation of fractured
shale and coalbed methane reservoirs, inducing caving in
coal and metal mining (Van As and Jeffrey, 2000), and dispos-
ing of waste by injection into underground rock formations
(Moschovidis et al., 1994).
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A considerable number of laboratory and field studies of
various kinds have demonstrated that branched and non-planar
fracture growth is not only possible but fairly common
(Warpinski and Teufel, 1987; Price and Cosgrove, 1990;
Jeffrey, 1996). Geological discontinuities such as natural joints,
faults and flaws, as well as bedding planes, in hydrocarbon re-
servoir rocks and in ore bodies (Warpinski and Teufel, 1987;
Pollard and Aydin, 1988, among others), may contribute to
the branching of hydraulic fractures. The bedding planes in lay-
ered sedimentary rocks affect hydraulic fracture growth be-
cause of changes in rock properties and in situ stresses
associated with the layers, as well as the effect their frictional
response has on fracture growth. For example, sharp changes in
direction of a dike into an existing plane of weakness or parting
plane can be found along the trace of dike intrusions (Price and
Cosgrove, 1990). Furthermore, similar offsets in fracture path-
ways have been documented in man-made hydraulic fractures
that have been mined and mapped (van As and Jeffrey, 2000;
Warpinski and Teufel, 1987; Jeffrey et al., 1995). Because
imperfectly bonded layer interfaces interact with and modify
the propagation pathways of hydraulic fractures (Baer, 1991;
Helgeson and Aydin, 1991; Narr and Suppe, 1991; Gross,
1993; Fischer et al., 1995; Becker and Gross, 1996; Cooke
and Underwood, 2001), a model for the intersecting process
must include the properties of interface and fracturing fluid.

In general, there are four types of interaction between
a fluid-driven fracture and a bedding contact within layered
sedimentary rocks, as sketched in Fig. 1. Fractures can pene-
trate through the bedding contacts without any division of the
fracture path and the vertical fluid flow. This type of crossing
is what is implicitly assumed to occur by all current hydraulic
fracture design models. In the opposite extreme case, the hy-
draulic fracture may be arrested or blunted at the bedding con-
tact due to large slip along the contact. Between these above
two extremes, a potential intermediate state is that the fracture
and the fluid flow are deflected into the bedding plane and are
divided into two branches. If the interface is free of flaws, the
fluid will invade it in the same way as an opening-mode hy-
draulic fracture growing along the horizontal bedding plane,
so that the vertical fracture eventually terminates at the bedding
plane, becoming a T-shaped fracture. Moreover, if there are
flaws on the interface, potential re-initiation of a new fracture
from one flaw will leave a step-over at the bedding interface
(Pollard and Aydin, 1988; Cooke and Underwood, 2001).

Most previous investigations, such as the studies by Baer
(1991), Helgeson and Aydin (1991) and Narr and Suppe
(1991), among others, have focused on fracture behaviours
within strata. Based on the elasticity considerations applied
to perfectly bonded interfaces or strong interfaces, a fracture
initiated in the stiffer of the two layers is able to advance to-
wards and enter into the softer layer, but is not able to grow
from soft to stiff. For strong interfaces, the elastic solutions
for a crossing fracture can be found in the work by Erdogan
and Biricikoglu (1973). However, the assumption of strong in-
terfaces is often incorrect for geological interfaces since most
interfaces have limited shear strength. For an interface that
has a finite frictional strength described by the Coulomb crite-
rion, the shear stress that can be carried by the interface or bed-
ding plane is limited (Jaeger and Cook, 1979), and frictional
sliding can take place. Fractureeinterface interaction with fric-
tional sliding, but without opening along the interface, was
studied theoretically by Weertman (1980), Keer and Chen
(1981) and Lam and Cleary (1984). In these studies, the distri-
bution of the frictional stresses along the interface was assumed
ad hoc. This assumed distribution of shear stress limits the ap-
plication of their results. In addition, interface crossing can in-
duce not only slip, but also opening at weak bedding contacts
(Jeffrey et al., 1987; Dyer, 1988; Fischer et al., 1995; Cooke
and Underwood, 2001; Gudmundsson and Brenner, 2001).

For fluid-driven fracture growth, interfacial opening can
arise from fluid penetration. The build-up of fluid pressure
on the bedding contact can open the interface, and this in
turn facilitates further fluid penetration. Fig. 2 shows a hydrau-
lic fracture propped with sand that was mapped after mining.
The fracture was vertical in the coal seam and also grew hor-
izontally along the interface between the coal and the overly-
ing rock (Jeffrey et al., 1994) to form a T-shaped fracture
shape. Of course, the growth of fluid-driven fractures along
bedding planes as shown in Figs. 1 and 2 will alter fracture
growth and fluid flow paths in all directions, and will affect
the overall fracture behaviour. Branching of fluid-driven frac-
tures into interfaces has an obvious and significant effect on
bedding bedding
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Fig. 1. Four types of interaction between hydraulic fractures and bedding planes (Thiercelin et al., 1987).
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fracture geometry, but has not yet been included in the studies
of hydraulic fracture processes, to the authors’ knowledge. In
this paper, we will use numerical experiments to investigate
the potential mechanisms of hydraulic fracture deflection
and propagation and subsequent fluid invasion at a frictional
bedding interface. The fracture will not be allowed to pene-
trate into the adjacent layer or to induce new fracture in it at
some location along the interface. Branching of the hydraulic
fracture which is initially perpendicular to the bedding contact
is controlled by many parameters such as (1) frictional coeffi-
cient of the interface, (2) elastic properties of the layers, (3)
remote stress conditions and (4) injected fluid viscosity. The
injection rate is held as a constant for all cases, although it
can affect the fracture deflection, too. Numerical results based
on a two-dimensional boundary element model will be pre-
sented to address the effects of these factors on the propaga-
tion process of fluid-driven fractures.

2. Problem formulation

The natural system we are modelling is a bedded sedimen-
tary rock containing a single fluid-driven fracture confined to
one layer, as shown in Fig. 3. The hydraulic fracture intersects

Fig. 2. A sand-propped hydraulic fracture that grew vertically in a coal seam

and horizontally along the interface between the coal and the roof rock (Jeffrey

et al., 1994).
and then deflects into the bedding plane. This T-shape fracture
is assumed to be infinitely long in the z-direction. This fracture
geometry is similar to the intersection of a PKN-like (blade-
like) fluid-driven fracture with a bedding plane. Alternatively,
if the leading edge of a large three-dimensional fracture has
a very small curvature, its coalescence with a bedding plane
is represented approximately by such a two-dimensional
model. If the T-shaped fracture develops as shown in Fig. 3,
the two-dimensional model accurately represents plane-strain
fracture behaviour on an xey cross-section.

Consider, as shown in Fig. 4, a plane-strain fracture propa-
gating towards the interface between two linear-elastic half-
planes. The infinite horizontal interface represents a bedding
plane. However, we model the frictional interface as a very
long fracture lying on the interface with frictional properties.
The y-axis is taken to be parallel to the interface and the Carte-
sian coordinate system is depicted in Fig. 4. The origin of the
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z

Fig. 3. Schematic geometry of a fluid-driven fracture deflecting at a bedding plane.
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Fig. 4. Configuration used to examine intersection and deflection of a fluid-

driven fracture at a frictional interface illustrating the definitions of various

quantities to be used.
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coordinate system is at the potential intersecting point between
a vertical fluid-driven fracture and a bedding plane. The injec-
tion point is at a distance L away from the intersecting point. It
is assumed that the rocks are impermeable, isotropic and elastic
media. The Young’s moduli, Poisson’s ratios and fracture
toughness for the rock layers are, respectively, Ei, ni and Ki

C,
where subscript i denotes the layer i¼ 1, 2. A Newtonian fluid
with viscosity m is injected at a constant rate Q0 into the vertical
fracture. The vertical far-field stress is denoted by s0

1, and the
layer-parallel far-field stresses in the upper and lower half-
planes are s0

2(1) and s0
2(2), respectively. Fluid pressure and far-

field stresses are taken as positive if in compression.
An equation, based on elasticity, provides the relationship

between the normal, w, and shear, v, displacement discontinu-
ities (DDs) of the fracture walls and the fluid pressure pf inside
the fracture. The formulation used is based upon a superposi-
tion scheme of singular dislocation dipole solutions. The
fracture branches are numbered based on the tips, that is, there
are N fractures if there are N tips. Summing up the contribu-
tions to the stresses from each fracture, the elasticity equation
for equilibrium fractures in the framework of a Cartesian
coordinate system is

snðx; tÞ � s1ðxÞ ¼
XN

r¼1

Z[r

0

½G11ðx; s;a;bÞwðsÞ

þG12ðx; s;a;bÞvðsÞ�ds

tsðx; tÞ � t1ðxÞ ¼
XN

r¼1

Z[r

0

½G21ðx; s;a; bÞwðsÞ

þ G22ðx; s;a; bÞvðsÞ�ds ð1Þ

where x¼ (x, y) and t is time; ds is the infinitesimal arc length
along the fracture; [r is the fracture length with a subscript in-
dex r identifying the fracture branch. sn is the normal stress
and within the fluid-filled parts, it is equal to pf and ts is the
shear stress associated with the frictional sliding along the in-
terface. s1 and t1 are the normal and shear stresses along the
fracture direction at location x caused by the far-field stresses,
respectively. G11, G12, G21, G22 are hypersingular Green’s
functions whose expressions can be found in Zhang and
Jeffrey (2006a). These Green’s functions are dependent on
the Dundurs’ parameters, defined by

a¼ m2ðk1 þ 1Þ � m1ðk2þ 1Þ
m2ðk1 þ 1Þ þ m1ðk2þ 1Þ; b¼ m2ðk1 � 1Þ � m1ðk2� 1Þ

m2ðk1 þ 1Þ þ m1ðk2þ 1Þ
ð2Þ

where ki ¼ 3� 4vi: The fracture index r will not be shown in
the following equations.

In order to maintain continuity of strain across the inter-
face, s0

2(1) and s0
2(2) are related by:

s
2ð2Þ
0

s
2ð1Þ
0

¼ E2ð1� n2Þ
E1ð1� n1Þ

þ
�

n2 �
E2ð1� n2Þ
E1ð1� n1Þ

n1

�
s1

0

s
2ð1Þ
0

ð3Þ
The fluid flow in the fractures is governed by the lubrica-
tion equation, that is, (Batchelor, 1967)

vw

vt
¼ v

vs

�
w3

m0
vpf

vs

�
ð4Þ

where m0 ¼ 12m: Because we assume no fluid loss occurs into
the impermeable rock, the global mass balance leads to:

XZ[f

0

wds¼ Q0t ð5Þ

where [f is the length of each fracture filled by fluid. The for-
mulation allows for a fluid lag which is the distance between
the fluid front [f and the fracture tip [ for each fracture branch.
The fluid front can be found in terms of the flux q([f) and the
opening w([f) at the fluid front in the form of

_[f ¼
q
�
[f

�
w
�
[f

� ð6Þ

where the flux is defined as q ¼ ðw3=m0Þ=ðvpf=vsÞ based on
Poiseuille’s law.

At the injection point, the fluid flux is equal to the injection
rate, that is,

qð0Þ ¼ Q0 ð7Þ

At the fracture tip, the opening and shearing DDs vanish, that is,

wðlÞ ¼ vðlÞ ¼ 0 ð8Þ
Generally speaking, bedding planes may have some rough-

ness, minor and major offsets, and occasional curves and kinks
associated with gouges and minerals, which often lower the
shear strength (Pollard and Aydin, 1988). The frictional con-
tact stresses on the rough interface must be taken into account
in exploring the interactions between fluid-driven fractures
and bedding planes. The Coulomb frictional law adopted in
the numerical model provides a proportional relation between
the frictional strength tf and the normal effective compressive
stress, sn, that is,

��tf

��¼ lsn ð9Þ

where l is the frictional coefficient.
If the shear stress acting is less than the frictional strength,

the fracture surface is in sticking mode, otherwise it is in slid-
ing mode. The direction of sliding can be reversed when the
tangential shear stress changes sign. The frictional stress and
the shear DD increments should meet the following condition
for the contact sliding mode (Tuhkuri, 1997)

tsDv� 0 ð10Þ

where Dv is the sliding increment.
In order to work out correct frictional modes for all contacts

along the interface, an initial guess is used and a check is made
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to ensure that the guess is correct at each time increment. If
not, the contact and sliding modes are updated based upon
the calculated stresses and displacements. The sticking or slid-
ing condition is then applied and stresses and displacements
are resolved followed by another check and modification until
the contact modes converge at each location.

The fracture growth prior to intersection is based on the
toughness in bed 1. Thus, we have

KI
1 ¼ KC

1 ð11Þ

where KI
1 is the Mode I stress intensity factor.

Although the bedding planes are idealized as closed,
smooth and continuous, they may be filled with minerals
and gouges, or proppants in the case of previously placed hy-
draulic fractures. Any associated initial apertures will provide
a hydraulic conductivity for fluid flow. The bedding plane can
be assigned a minimum conductivity wo

h which is not a physical
opening and does not affect stresses, but is only used in the
fluid flow calculations.

As for fracture intersection of an interface, it is assumed
that intersection occurs when the fracture tip is located within
a small distance from the interface. For most cases, the inter-
face is opened by interaction prior to intersection. The numer-
ical treatment of fractureeinterface intersection is outlined in
the next section.

For T-shaped fractures formed post intersection (Fig. 5),
fluid can invade into two fracture branches after intersection.
The influx of each fracture branch must be calculated explic-
itly. A balance of flux into and out of the junction is pre-
scribed, and the same fluid pressure is imposed on all
fracture branches that meet at the junction. The outflow flux
can be obtained by the volume changes in the vertical fracture
at a given time step and this flux is initially divided into the
two fracture branches according to the ratio of their conductiv-
ity. For the sake of finding the correct influx for each branch,
the solution is then sought numerically by iterations so as to
satisfy the conditions on flux balance and pressure continuity
at the T-junction.

3. Numerical method

A numerical method with an implicit scheme for fracture
opening and an explicit scheme for time is used to solve the
boundary-value problem described by Eqs. (1) and (4)e(11).
A similar procedure has been described by Zhang et al.

bedding
plane

Fig. 5. Configuration at a T-junction and stress and fluid conditions at the

intersection.
(2002) for penny-shaped fracture growth in semi-infinite
zero-toughness materials without fluid lag. Let T be an arbi-
trary time scale which can be defined as follows:

T ¼ E02m0

ðs2
0Þ

3
ð12Þ

where E0 ¼ E1=ð1� n2
1Þ:

Introduce a small parameter 3 and a length scale L as
follows:

3¼
�

m0

E0T

�1=3

L ¼
�

E0Q3
0T4

m0

�1=6

ð13Þ

and a dimensionless time and coordinates as follows:

t¼ t

T
and 2¼ ðx;hÞ ¼

�
x1

L
;
x2

L

�
ð14Þ

Therefore, we can define the dimensionless fracture length,
the size of the fluid-filled region, the opening and sliding DDs,
as well as the normal and frictional stresses, as follows
(Detournay, 2004):

[¼ LgðtÞ

[f ¼ L4ðtÞ

w ¼ 3LUðx; h; tÞ

v ¼ 3LQðx; h; tÞ

sn ¼ 3E0Pðx; h; tÞ

tf ¼ 3E0Fðx; h; tÞ ð15Þ

Based on Eq. (15), Eqs. (1) and (4)e(11) can be rewritten as
follows:

Pð2;tÞ �P1ð2Þ ¼
XZg

0

½J11ð2;c;a;bÞUðc;tÞ

þJ12ð2;c;a;bÞQðc;tÞ�dc

Fð2; tÞ � F1ð2Þ ¼
XZg

0

½J21ð2;c;a; bÞUðc; tÞ

þ J22ð2;c;a; bÞQðc; tÞ�dc ð16Þ

vU

vt
¼ v

vc

�
U3vPf

vc

�
ð17Þ
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XZ4

0

U dc¼ t ð18Þ

_4¼Jð4Þ
Uð4Þ ð19Þ

Jð0Þ ¼ 1 ð20Þ

UðgÞ ¼QðgÞ ¼ 0 ð21Þ

jFj � lP ð22Þ

kI
1 ¼ kC

1 ð23Þ

where dc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dx2 þ dh2

p
is the infinitesimal segment length;

P1;F1 are defined by the relations s1ðxÞ ¼ 3E0P1ð2Þ and
t1ðxÞ ¼ 3E0F1ð2Þ; Pf is defined by pf ¼ 3E0Pf ; J ¼
U3vPf=vc; Jij are the Green’s functions in the normalized
coordinate system;

kI
1 ¼ 4

�
2

p

�1=2
KI

1�
E03m0Q0

�1=4
kC

1 ¼ 4

�
2

p

�1=2
KC

1�
E03m0Q0

�1=4
ð24Þ

A discretised form of the above equations with associated
boundary conditions can be obtained in the same manner as
used in Zhang et al. (2002). Numerical solutions are based
on a fixed element size Dh and a small, but adjustable time
step, Dt. The current element number for a fracture at an
elapsed time is denoted by M and the corresponding element
number fully occupied by fluid is m. For the elasticity equa-
tions, we use the DD method with constant strength for each
element (Crouch and Starfield, 1990). Only discretisation
along the fracture is required. The lubrication equation can
be solved at a time increment Dt by means of the Finite Dif-
ference Method (FDM). When the propagation criterion is
met, a fixed size Dh equal to the standard element size, is
added to the fracture tip in the propagation direction. To im-
prove the accuracy of the stress intensity factor calculation,
a mesh adaptive scheme is employed by using six fine ele-
ments close to the fracture tip. These elements are one-third
in size of the standard sized elements. When a fracture grows,
the mesh is adjusted so that only six fine elements are used.
The traction and opening must be mapped to the new mesh
after each growth step. In addition, at the fracture tip, a singular
element (square root shape function) is used.

The length ratio of the fluid length and the element size in
the partially filled element mþ 1 is denoted by d. The fracture
length is g ¼ MDh and the fluid front is at 4 ¼ ðmþ dÞDh. If
the filling element is one of the finer elements, Dh is replaced
by Dh/3. The flux into the filling element can be obtained by
the equation of mass continuity (Zhang et al., 2005). In partic-
ular, the increment of d for a time step Dt can be expressed as
follows:

Dd¼Jmþ1

Umþ1

Dt ð25Þ

The coalescence between a hydraulic fracture and an inter-
face is treated by the following numerical scheme. Linkage is
assumed to occur when the interface is approached to within
a radius of one standard element size Dh from the tip of hy-
draulic fracture. In Fig. 6(a), point E is the projected intersec-
tion point based on the direction determined from the
maximum hoop tensile stress. Although the two fractures
may connect in a curved or even zigzag path, the linking ele-
ments are treated as straight, as shown in Fig. 6(b). The final
linkage is made from the hydraulic fracture tip to the nearest
end point of the elements on the joint. Before the fracture link-
age starts, mesh refinement is carried out. The size used for the
connecting elements is less than or equal to Dh/3 so as to re-
duce the error caused by this smoothing process to an accept-
able level. In the algorithm, two elements on the interface
closest to the intersecting point E can be identified and each
of these two elements is divided into three equal-size ele-
ments, as shown in Fig. 6(b). The linkage point is then selected
as the end point F of one of these fine elements that is the clos-
est to the proposed intersecting point E.

3.1. Error assessment

To test the model accuracy in the calculation of stresses and
DDs, a static fracture intersecting two layers is revisited here.
The fracture configuration is illustrated in Fig. 7. The elastic
constants and fracture sizes are exactly the same as those
used by Erdogan and Biricikoglu (1973) and Peirce and
Siebrits (2001). There is no vertical far-field stress and the hor-
izontal remote stresses for the two layers are related according
to Eq. (3), that is,
A

B

C

D

E

(a) (b)

F
A

B

C

D

Fig. 6. Schematic of fracture coalescence process. (a) Prior to coalescence and (b) post coalescence.
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1� n2
1

E1

p1 ¼
1� n2

2

E2

p2 ð26Þ

In Table 1, we provide the stress intensity factors for the
two fracture tips, determined by our model, by MLAYER2D
(Peirce and Siebrits, 2001) and by the semi-analytic solution
(Erdogan and Biricikoglu, 1973), respectively. Our results
were obtained using 100 elements. A good agreement is ob-
served among these results. Our numerical approximations
are within 1% of both the semi-analytical solutions and the
MLAYER2D results.

To check the applicability of the model to interfacial frac-
ture problems, an interfacial fracture with a length 2a, which is
subjected to a uniform remote tension p, is examined numer-
ically. For the case of a¼ 0.8 and b¼ a/4, the numerical re-
sults of opening and sliding profiles are depicted in Fig. 8.
The corresponding analytical solutions are given by Hutchin-
son et al. (1987)

wþ iv¼ p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2� x2
p

C
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

p
����xþ a

x� a

����
i3

ð27Þ

where C is the effective bimaterial modulus and 3 the bimate-
rial constant. Both of them are defined, respectively, by,

C¼ 2m1ð1þ aÞ
ðk1þ 1Þ

�
1� b2

�¼ 2m21ð1� aÞ
ðk2þ 1Þ

�
1� b2

� and

3¼ 1

2p
ln

�
1� b

1þ b

�
ð28Þ

b1

b2

x

y

material 1
E1=107 MPa
ν1=0.3 

material 2
E2=4.45*105 MPa
ν2=0.35 

p1

p2

Fig. 7. Pressurized fracture crossing a bimaterial interface.

Table 1

Stress intensity factors for three different models

b2/b1 Fracture tip

normalized

stress intensity

This

paper

MLAYER2D

(Peirce and

Siebrits, 2001)

Erdogan and

Biricikoglu

(1973)

0.05 KIðb1Þ=ðp1

ffiffi
l
p
Þ 1.4055 1.4035 1.4067

KIðb2Þ=ðp2

ffiffi
l
p
Þ 4.2780 4.2268 4.3607

1.00 KIðb1Þ=ðp1

ffiffi
l
p
Þ 1.0918 1.0921 1.0931

KIðb2Þ=ðp2

ffiffi
l
p
Þ 1.1571 1.1586 1.1787

2.00 KIðb1Þ=ðp1

ffiffi
l
p
Þ 0.9118 0.9124 0.9129

KIðb2Þ=ðp2

ffiffi
l
p
Þ 0.9654 0.9676 0.9770
In Fig. 8, the fracture opening and sliding DDs are normalized by
pa=C

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

p
. A good agreement between the numerical result

and the analytical solution is found. These relatively small
discrepancies indicate the numerical model proposed here is
acceptable for fracture problems in bi-material layered rocks.

4. Numerical results

To investigate the effects of slip and debonding of bedding
interfaces on hydraulic fracture crossing interactions, numeri-
cal experiments are performed based on the configuration
shown in Fig. 4. For the sake of simplicity, the long frictional
bedding plane is given an interface toughness of zero and
growth of the hydraulic fracture in the direction away from
the interface is arbitrarily prevented. Plane-strain fracture
growth is studied under a remote stress field with the vertical
compressive stress s0

1 as a parameter, while the horizontal
compressive stress in rock 1 is specified as s0

2(1)¼ 4 MPa
and its counterpart in rock 2 is determined by Eq. (3). One
of the two layers has Young’s modulus E¼ 3300 MPa and
Poisson’s ratio n¼ 0.4 and the other has E¼ 10 000 MPa
and Poisson’s ratio n¼ 0.4. If the fluid-driven fracture grows
from the soft to the stiff layer, a¼ 0.504 and b¼ 0.084, and
if from the stiff to the soft layer, a¼�0.504 and
b¼�0.084. The fracture toughness of both rocks is given
as KI

C¼ 0.5 MPa m1/2. The injection rate is fixed as
Q0¼ 0.006 m2/s and the dynamic fluid viscosity varies as
m¼ 0.001, 0.01, 0.1 Pa s. The frictional coefficient of the bed-
ding interface varies as 0.1, 0.5 and 1.0. In addition, there is
a minimum hydraulic conductivity (wo

h) along the bedding in-
terface, although it does not affect the stress fields. In the cal-
culation, wo

h¼ 0.1 mm is chosen for all cases.
To investigate fluid invasion due to fracture termination at

the frictional bedding contacts, we track the fluid pressure at
the borehole and at the intersecting point so as to deduce the
possible fluid patterns for various material parameters and
geometric arrangements. Since the geometric symmetry holds
for two branched daughter fractures as shown in Fig. 9, we can
define the distance s to the borehole along the fracture
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Fig. 9. Geometry used in elastic analysis of fracture growth along the interface. The fracture geometry is symmetric with respect to the line of the parent fluid-

driven fracture. s denotes the distance to the injection well along the fracture path. (a) Prior to intersection and (b) post intersection.
pathways as a new coordinate to facilitate presenting results.
To determine how rapid the fluid invades the interface, the
stress and opening profiles at the same elapsed time are com-
pared. For numerical experiments, there are two different ma-
terial arrangements depending on which bed the parent
hydraulic fracture is located in. Let us begin with the cases
where the injection point is in the softer layer.

4.1. Soft to stiff

In Fig. 10, the time dependence of injection pressures is
given for different distances L in the case of m¼ 0.1 Pa s,
s0

1¼ 5 MPa and l¼ 1.0. The ‘‘vertical fracture’’ solution is
presented for the growth of the parent fracture in the softer
layer without an interface. In the calculation, after coalescence
of the parent hydraulic fracture and the interface, the fluid
front advance is impeded by the interface. The injection pres-
sure then starts to increase so as to force the fluid into the in-
terface, although it keeps decreasing in the ‘‘vertical fracture’’
solution. There is a peak of fluid pressure for each curve in
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Fig. 10. Injection pressure versus time curves for various distances in the case

of m¼ 0.1 Pa s, s0
1¼ 5 MPa and l¼ 1.0.
Fig. 10 required to overcome the stress barrier imposed by
the compressive stress across the interface which arises from
both the far-field stresses and the additional stress induced
on the interface by the fluid pressure in the parent fracture.
Fluid and fracture invasion becomes easier after these peaks.
It is noted that as L increases, the pressure difference between
the value at intersection and the peak decreases, but the time
interval for this pressure change increases. In addition, after
a certain period for fluid invasion into the interface, the injec-
tion pressure decreases to the plateau value. The closer the
borehole is to the intersecting point, the larger is the plateau
value of the injection pressure. In contrast, the injection pres-
sure decreases continuously with time for the ‘‘vertical frac-
ture’’ solution. The differences between the curves and the
‘‘vertical fracture’’ solution arise from the change in fracture
geometry, modulus contrast and far-field stresses. The higher
plateau value of injection pressure at L¼ 1 m implies a stron-
ger mechanical interaction around the T-junction for a short
parent fracture. However, for uniformly pressurised fractures,
large parent fracture lengths are associated with an increase in
stress concentration across the interface (Lawn, 1993).

Fluid pressure at the intersecting point first increases with
time, and then it reaches the maximum as shown in Fig. 11.
Finally it decays slowly with time. The time in Fig. 11 is
counted from the instant when the fluid front reaches the inter-
secting point. With increasing far-field stress s0

1, the magni-
tude of the peak fluid pressure increases, and a longer time
is required for fluid pressure to reach this peak. It is interesting
to note that the difference of fluid pressure in the long term is
equal to the difference in the vertical far-field stress. For the
case of s0

1¼ 16 MPa, further fluid penetration into the inter-
face is prevented after a certain amount of fluid invasion. As
seen in Fig. 11, the fluid pressure at the intersecting point is
still increasing at the latest time simulated. In this case, the in-
terfacial opening near the intersection point is decreased to
a very small value as displayed below. It must be mentioned
that the model employed does not allow for fracture initiation
in the intact side of the bedding contact. The greater fluid pres-
sure in the parent fracture will induce larger layer-parallel
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tension in the intact side. This can give rise to initiation of new
fracture if the tensile stress exceeds the material strength.
Therefore, straight fracture growth across the interface is
more likely at high confining stresses, if the frictional strength
of the interface is large enough to prevent or limit slip.

The fluid length on the interface and the fluid front velocity
have been plotted against time in Fig. 12 for two values of s0

1.
Increasing the confining stress results in a decrease in the fluid
front velocity post intersection since the fluid invasion into the
interface becomes more difficult. But, the initial slow fluid
movement is later compensated for since it is observed in
Fig. 12 that the fluid velocity at s0

1¼ 8 MPa eventually in-
creases above that at s0

1¼ 5 MPa. The fluid front at larger s0
1

will catch up with its counterpart at lower s0
1 since the differ-

ence in the fluid length decreases with time, as shown in
Fig. 12. After a longer time, the fluid front velocity would be-
come independent of the confining stress, as would be the case
for a single channel hydraulic fracture.

To detail the responses of fluid invasion, the distributions of
(a) fracture opening, (b) slip, (c) normal stress and (d) shear
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stress are plotted in Fig. 13 in terms of the coordinate s, for
the four values of s0

1. The elapsed time for all cases is the
same (t¼ 2 s), although t¼ 1.94 s is adopted for s0

1¼ 16 MPa.
It is found in Fig. 13(a) that the interface is closed at s¼ 1 m
when s0

1 is increased to 16 MPa. The position s¼ 1 m corre-
sponds to the intersecting point on the interface. On the interface
(s> 1 m), the location with maximum opening is at some dis-
tance from the intersecting point. It is important to note that
the opening at the intersecting point decreases with increasing
vertical far-field stress. When s0

1¼ 16 MPa, the pinching of
the interface can impede fluid penetration. However, in this
case, some parts of the interface remain opened and are filled
and pressurised by previously invaded fluid. Therefore, if the
vertical far-field stress is large enough, the fluid may invade
the interface initially, but at a certain time during the interaction
process, pinching develops and fluid invasion is blocked. The
maximum opening along the parent fracture is at the intersecting
point, and this opening magnitude increases with the confining
stress. In addition, the extremely large opening of the parent
fracture at the intersecting point for s0

1¼ 16 MPa implies
a blunted fracture. The larger fluid pressure associated with
blunted fracture tip is shown in Fig. 13(c) and this can impose
additional compression on the interface, leading to a pinching
and hindering of further fluid invasion.

The opening profile also shows the location of the fluid
front. As shown in Fig. 13(a) the fluid front at s0

1¼ 6 MPa
is very close to that at s0

1¼ 5 MPa, and the front at
s0

1¼ 8 MPa is catching up with them because of its eventual
faster fluid speed as shown in Fig. 12. This further confirms
the conclusions drawn based on the findings in Fig. 12.

The maximum sliding along the bedding plane occurs al-
ways at the intersecting point as shown in Fig. 13(b) resulting
from the transfer of the opening of the parent fracture into the
shear displacement along the interface. The slip decreases with
the distance to the intersecting point. As the vertical far-field
stress is increased, the maximum slip increases as does the
opening along the parent fracture. However, the size of the
zone of slippage decreases. In particular, there is a small re-
gion with large slip near the intersecting point for
s0

1¼ 16 MPa, as shown in Fig. 13(b).
The normal stress drops rapidly near the ends of the open-

ing segments on the interface, as depicted in Fig. 13(c). The
normal stress is equal to the fluid pressure in the fluid-filled
part and to the contact stress in the closed part. There is no
dry or fluid lag region on the interface, for the numerical dis-
cretisation used, and therefore the fluid front is exactly at the
fracture tip during the fracture propagation process. However,
as indicated in Fig. 13(c), large stress gradients typically occur
near the tip of hydraulic fractures as a result of coupled fluid
flow and rock deformation. The normal stress drop identifies
the high pressure gradient in the fracture channel. An increase
in contact stress is found ahead of the fracture tip. The result-
ing pressure gradient is a driving force for fluid invasion. The
small normal stress drop for s0

1¼ 16 MPa results because of
a lack of fluid flow into the interface fracture because of the
restriction at the pinching point. In addition, a zone of
elevated shear stress for each case exists near the fluid front
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Fig. 13. Distributions of (a) opening, (b) slip, (c) normal stress and (d) shear stress for various confining stresses at t¼ 2 s, but t¼ 1.94 s for s0
1¼ 16 MPa under the

same material constants given in Fig. 11.
as shown in Fig. 13(d), which provides the resisting stress to
the sliding. The shear stresses die out with the distance from
the fracture front and the point of maximum shear stress
coincides with the transition from sliding to sticking of the in-
terface (failed in shear or not). The maximum shear stress
reached increases with the vertical far-field stress at a given
time in the simulation. The larger shear stress for
s0

1¼ 16 MPa is a reflection of the large frictional resisting
strength associated with the higher confining stress.

To validate that the mechanical interaction produces the
pinching on the interface at the higher confining stress, Finite
Element analysis was carried out using FRANC2D (2000).
The stress levels along the parent fracture and the two daugh-
ter fractures were directly extracted from the stress distribution
provided in Fig. 13(c) for s0

1¼ 16 MPa. These stresses were
then imposed in FRANC2D as boundary loads. Allowing for
symmetry, only half of the fracture problem is analysed.
Fig. 14(b) shows the deformed mesh around the T-junction un-
der the loading configuration as illustrated in Fig. 14(a). The
interface fracture tends to be in contact at the intersecting
point, but a portion of the interface is still open, as shown in
Fig. 14(b). It must be mentioned that there is a small gap
across the interface fracture in the original finite element
mesh, so that the upper and lower surfaces of the interface
at the interesting point are not touching. The opening profile
on the interface is in good agreement with the result predicted
by our model given in Fig. 13(a). Also, the opening along the
parent fracture is much larger than that on the interface, and
pinching at the intersecting point occurs. Mechanically, this
pinching arises from the deformation contrast of the upper stiff
rock and the lower soft one. The stiff rock in tension does not
experience significant surface deformation. The rock mass
around the intersecting point in the soft layer experiences a de-
formation pattern similar to a right-angle wedge loaded along
two faces, as shown in Fig. 14(c). The compressive stresses
acting on the two walls will impel the wedge corner against
the surface of the upper layer to form a pinch. The formation
of the pinch suggests that fluid transport along the interface
will be inhibited and fracturing fluids containing solids such
as proppants will not be able to penetrate this narrower region.
It must be noticed that pinching depends not only on the con-
fining stress, but also on the length of the parent fracture and
other factors.

Fig. 15 shows the variations of fluid pressure at the inter-
secting point with time for cases considering different fric-
tional coefficients of the interface. Similar to the fracture
problems in homogeneous materials (Zhang and Jeffrey,
2006b), the coefficient of friction plays an important role in
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the early stage of fracture invasion. After a certain amount of
fluid penetration, all curves converge to the same curve which
corresponds to the solution for a fluid-driven fracture growing
along a closed interface without any frictional strength or

(a)

(b)

soft rock 

y

x

(c)

borehole

soft rock

= 4MPa2(1)
0

= 9MPa

= 16MPa0

0.84m1m

0
σ2(2)

σ1

σ

hard rock

Fig. 14. (a) Fracture geometry and loading condition for interface closure at

large confining stress; (b) deformed finite mesh around the T-shaped intersec-

tion from Finite Element Analysis using FRANC2D; and (c) right-angle

wedge loaded along two sides and deformation profiles of both sides.
adhesion, that is, the ‘‘interface fracture’’ solution. The peak
pressure reached is different for various coefficients of fric-
tion. The smaller coefficient of friction results in a larger max-
imum fluid pressure. The interface fracture penetration is
delayed for l¼ 0.1 compared with the other cases since
more fluid is required to generate the large fluid pressure. If
the interface is frictionless, the associated large sliding would
result in a fully blunted end to the parent fracture, as analysed
by Zhang and Jeffrey (2006b). A low shear stress level along
the interface produces relatively small tensile stress on the in-
tact side of the interface. Therefore, it is impossible to induce
new fractures in the intact layer. Instead, the parent hydraulic
fracture becomes wider and wider, and is ultimately arrested at
the frictionless bedding plane.

Alternatively, the reduction of fluid viscosity to a very low
level or increasing it to a relatively high level will change the
fracture propagation and fluid invasion process, as shown in
Fig. 16. Fig. 17 displays the corresponding opening profiles
at t¼ 2 s for m¼ 0.01 and 0.1 Pa s, as well at t¼ 0.45 s for

Time (s)
0.0 0.5 1.0 1.5 2.0 2.5 3.0

Fl
ui

d 
Pr

es
su

re
 a

t I
nt

er
se

ct
io

n 
(M

Pa
)

0

2

4

6

8

10

12

14

interface crack without toughness

1.0
0.5

λ=0.1

Fig. 15. Fluid pressure at the intersecting point versus time curves for various

frictional coefficients (m¼ 0.1 Pa s, L¼ 1 m and s0
1¼ 6.0 MPa).

Time (s)
0.0 0.5 1.0 1.5 2.0

Fl
ui

d 
Pr

es
su

re
 a

t I
nt

er
se

ct
io

n 
(M

Pa
)

0

2

4

6

8

10

12

μ=0.001

0.01
0.1

Fig. 16. Time dependence of fluid pressure at the intersecting point for various

fluid viscosities (l¼ 0.5, L¼ 1 m and s0
1¼ 6.0 MPa).



407X. Zhang et al. / Journal of Structural Geology 29 (2007) 396e410
m¼ 0.001 Pa s. The injection pressure is still rising for
m¼ 0.001 Pa s as shown in Fig. 16, but fluid invasion along
the interface is inhibited because as shown in Fig. 17, pinching
develops at the intersecting point for m¼ 0.001 Pa s, similar to
the case of large vertical far-field stress. The low-viscosity
fluid can enter a small conductivity interface easily. Some fluid
is trapped in an open portion of the interface as shown in
Fig. 17. However, a pressure sufficient to propagate the frac-
ture must be present before the fracture can move forwards.
For the lower viscosity cases, the pressure of the fluid stored
in daughter fractures is not large enough to extend the fracture
tip, but it produces a loading condition similar to a deformation
pattern of a right-angle wedge as shown in Fig. 13(c). This can
bring about movement of the corner of the wedge, and associ-
ated pinching at the intersecting point. On the other hand, in
Fig. 16, an increase in fluid viscosity can yield a higher
peak fluid pressure that results in larger opening and slower
fracture growth as shown in Fig. 17. In this case, more energy
is consumed by the transport of high viscosity fluids. In addi-
tion, the large fluid pressure in the parent fracture can induce
large tensile stress on the intact side of the bedding plane. Hy-
draulic fractures driven by high viscosity fluids may, for this
reason, penetrate the interface, rather than deflect along the
interface.

4.2. Stiff to soft

Now we look at the cases where the parent fluid-driven
fracture attempts to cross the interface from the stiffer layer.
In contrast to the soft-to-stiff cases, the flexibility of the soft
rocks on the intact side of the interface will facilitate separa-
tion of the interface surfaces. Therefore, the tendency for
pinching is not present in the cases studied. The evolution of
the fluid pressure at the intersecting point is shown in
Fig. 18 for various values of the vertical far-field stress. The
maximum pressure increases with increasing vertical far-field
stress. For the case of s0

1¼ 16 MPa, a peak value is reached
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followed by a slowly decreasing pressure with time, which
is associated with progressive fracture invasion along the
interface.

The fracture opening profiles for different vertical far-field
stresses at t¼ 2 s are given in Fig. 19. Although the fracture tip
for s0

1¼ 16 MPa has not extended as far as in the other cases,
there is no pinching along the fracture path. However, there is
a developing pinch near the intersecting point. A further in-
crease in s0

1 may give rise to the formation of complete closure
and pinching at this point. But the vertical stress required for
pinching to develop is much larger than the 16 MPa value
found for the soft-to-stiff cases. Compared with the curves
provided in Fig. 13(a), the opening along the interface is larger
and the fracture length is longer. In other words, the fracture
and fluid penetration along the interface becomes easier.
This indicates that the fluid-driven fractures can readily deflect
into and propagate along the interface, and thus they are more
likely to be terminated and become T-shaped.

Comparing the results in Fig. 18 with curves in Fig. 11 under
the same stress conditions but different material arrangement,
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the peak fluid pressure is higher when the parent fracture is in
the stiff layer. This is caused by the narrower channel of the par-
ent fracture in the stiffer rock, as can be seen by the opening
profiles in the parent fractures in Figs. 13(a) and 19. When
the parent fracture is contained in the stiffer layer, the time in-
terval for fluid pressure to reach the peak is much shorter than
the opposite layer stiffness condition. With increasing time, all
curves asymptotically approach a value that depends on the
pressure needed to propagate a simple interface fracture. The
plateau values reached at t¼ 2 s are 6.53, 7.52 and 9.55 for
s0

1¼ 5, 6 and 8 MPa, respectively, but the curve for
s0

1¼ 16 MPa has not reached its plateau value at t¼ 2 s. It is in-
teresting to note that the differences in the plateau values are
roughly equal to the differences in the vertical far-field stresses
for these cases.

Fig. 20 demonstrates the evolution of injection pressures
for different values of distances L. After the parent fracture
touches the interface, the injection pressure continues to de-
crease. This pressure is at first lower than the ‘‘vertical frac-
ture’’ solution corresponding to fluid-driven fracture growth
in the stiff rock without the interface. The pressure profiles
in Fig. 10 never fall below the corresponding ‘‘vertical frac-
ture’’ solution. The higher modulus increases the propagation
pressure before intersection with the interface, and this higher
pressure facilitates fracture propagation and fluid invasion into
the interface. However, the change in propagation direction is
expected to result in higher pressure because of the greater
confining stresses acting across the interface. Subsequently,
there is a gradually increasing stage for the fluid pressure dur-
ing fracture growth on the interface. Moreover, no intermedi-
ate peak of injection pressure is seen in the data of Fig. 20. The
curves increase slowly to approach their plateaus as shown in
Fig. 20. However, the pressure at the intersection point shown
in Fig. 10 for the soft-to-stiff cases demonstrates that the injec-
tion pressure decreases with fracture growth on the interface to
asymptotically approach the solution for a fluid-driven inter-
face fracture. The increasing trend in injection pressure is at-
tributed to the interaction of the parent and daughter fractures.
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Growth of the daughter fractures induces stresses that tend to
squeeze and narrow the parent fracture. This, in turn, causes an
increase in the local flow rate at the intersection point so that,
for a period of time, it exceeds the injection rate at the bore-
hole. The narrower parent fracture channel and the increased
local flow rate both contribute to the slowly increasing pres-
sure trend seen in Fig. 20.

The frictional properties of the interface can affect the early
stage of fracture and fluid invasion, as shown in Fig. 21. Com-
pared with the results shown in Fig. 15 for soft-to-stiff cases,
the differences in the peak value for three frictional coeffi-
cients shown in Fig. 21 are much smaller, although signifi-
cantly different frictional coefficients are used. It is also
seen that the frictional effect can be ignored at large time since
the solutions asymptotically approach the interfacial solution
for a fluid-driven fracture growing on a frictionless interface.
As the pure interface fracture solution is independent of mate-
rial arrangement, the large-time solutions at a fixed s0

1 are the
same for both material settings. It is noted in Fig. 21 that when
the parent fracture is in the stiffer layer, the solutions after in-
tersection approach the interfacial solutions more quickly than
in the soft-to-stiff cases.

As stated above, the pinched interface profile is not found
for any of the three fluid viscosities m¼ 0.001, 0.01, 0.1 Pa s
as shown in Fig. 22. The fluid pressure at the intersecting point
increases to a peak and it then decreases with time to a steady
value. The slowly decreasing trend at large time can be taken
as an indication of continuous fracture growth and fluid inva-
sion along the interface. The peak value of fluid pressure at the
intersecting point increases with the fluid viscosity, demon-
strating that fracture penetration into the interface is easier
for low-viscosity fluid cases.

5. Conclusions

A numerical method is presented to address the coupled
process of rock deformation and fluid flow involved in the in-
teraction between a fluid-driven fracture and a frictional
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interface or bedding plane. Numerical experiments have been
used to explore some features of fracture deflection into and
subsequent growth along the bedding contact. Various factors
that affect the process, such as modulus contrast, in situ
stresses, interfacial frictional strength and fluid viscosities,
are considered. Hydraulic fractures propagating initially per-
pendicular to and towards the bedding plane can deflect into
the bedding plane to create two daughter branches on the in-
terface, post intersection. Numerical results presented show
the time-dependent variations of opening, fluid pressure, con-
tact stress and fluid front position. Previous studies from the
literature contain ad hoc assumptions on stress distributions
that we have relaxed, but most of their conclusions have
been recovered here. In particular, fracture propagation and
fluid invasion into the interface can either continue or be in-
hibited as a result of the local stress and deformation states
at the intersecting point.

After an initially planar fracture deflects into an interface,
the parent and daughter fractures interact mechanically with
each other. For the case of a patient fracture originating in
the soft layer of a soft-stiff pair, relatively large interface slid-
ing associated with low frictional strength arising as a result of
with low confinement or a small frictional coefficient can pro-
duce deformation that seals fluid entry into the daughter frac-
ture at the intersecting point. This case can also result in low
induced tensile stresses parallel to the interface on the intact
side, making fracture re-initiation less likely. The parent frac-
ture is therefore blunted (Zhang and Jeffrey, 2006b).

For intermediate confining stresses, the fracture driven by
a lower viscosity fluid can grow into an interface with moder-
ate frictional strength. Growth of two fracture branches occurs
as the fluid volume injected increases. However, an impedi-
ment to fracture growth on the interface is associated with
a peak in the time-dependent injection pressure history. The
value of the peak fluid pressure increases with an increase in
vertical far-field stresses and fluid viscosity, and with a reduc-
tion in the coefficient of friction of the interface and the
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Fig. 22. Fluid pressure at the intersecting point versus time curves for various

fluid viscosities (l¼ 0.5, L¼ 1 m and s0
1¼ 6.0 MPa).
distances to the injection borehole. The vertical far-field stress
plays a two-fold role in the fracture deflection and fluid inva-
sion along the interface. Higher vertical far-field stress can de-
lay the fracture propagation by increasing the pressure needed
for fluid invasion, but after a short time when the stress barrier
is overcome, the relatively higher fluid pressure drives the
fluid front faster. It is also found that the long-time solutions
tend to be the same as the interface solution for a fluid-driven
fracture growing along a frictionless interface. The long-time
solutions are therefore independent of the frictional coefficient
of the bedding plane.

The local stress states around the intersecting point resem-
ble those around a right-angle wedge with loads exerted on
both sides. The formation of a pinch point at the intersecting
point occurs under the conditions of high vertical far-field
stress and low fluid viscosity when the parent fracture origi-
nates in the softer layer. A small amount of fracture growth
on the interface normally takes place prior to the formation
of a pinch point. In these cases, high tensile stresses will build
up in the intact rock on the other side of the interface opposite
the parent fracture, provided the frictional strength of the inter-
face is not too low. The higher tensile stress can result in a new
fracture nucleating in the intact rock so that the hydraulic frac-
ture can grow across the interface.

When the parent fracture is located in the stiff layer, the
stress barrier on the interface for fracture invasion is weak
due to the flexibility of the intact soft layer. The pinch point
opening profile is not generated on the interface for the stiff-
to-soft cases studied. The injection pressure initially drops be-
low the ‘‘vertical fracture’’ solution, post intersection. Because
of additional confinement on the parent fracture induced by
the growth of the daughter fractures and associated squeezing
of the parent fracture, a local flow rate develops at the intersec-
tion point that exceeds the injection rate specified in the parent
fracture. In response, the injection pressure increases over the
entire period of time simulated rather than peaking and then
decreasing as it does in the soft-to-stiff case. Furthermore,
the fluid-driven fracture is more likely to be terminated at
the interface, rather than to reinitiate a new fracture in the in-
tact soft rock. In addition, the long-time solutions for fracture
propagation along the interface also approach the single inter-
face fracture solution that is independent of material
arrangement.
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